Thursday, November 1, 2018

Rare Earth Metals





Rare Earth Metals
Introduction
A rare-earth element (REE) or rare-earth metal (REM), as defined by IUPAC, is one of a set of seventeen chemical elements in the periodic table, specifically the fifteen lanthanides, as well as scandium and yttrium. Scandium and yttrium are considered rare-earth elements because they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties. For the same set of mineralogical, chemical, physical (especially electron shell configuration), and related reasons, a broader definition of rare earth elements including the actinides is encountered in some cases. Thorium is a significant component of monazite and other important rare earth minerals, and uranium and decay products are found in others. Both series of elements begin on the periodic table in group 3 under yttrium and scandium.
The 17 rare-earth elements are cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium (Ho), lanthanum(La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), promethium (Pm), samarium (Sm), scandium (Sc), terbium (Tb), thulium (Tm), ytterbium (Yb), and yttrium (Y).
Despite their name, rare-earth elements are – with the exception of the radioactive promethium – relatively plentiful in Earth's crust, with cerium being the 25th most abundant element at 68 parts per million, more abundant than copper. They are not especially rare, but they tend to occur together in nature and are difficult to separate from one another. However, because of their geochemical properties, rare-earth elements are typically dispersed and not often found concentrated as rare-earth minerals in economically exploitable ore deposits. The first such mineral discovered (1787) was gadolinite, a mineral composed of cerium, yttrium, iron, silicon, and other elements. This mineral was extracted from a mine in the village of Ytterby in Sweden; four of the rare-earth elements bear names derived from this single location.
Utilization and Uses  
Rare earths are a series of chemical elements found in the Earth’s crust that are vital to many modern technologies, including consumer electronics, computers and networks, communications, clean energy, advanced transportation, health care, environmental mitigation, national defense, and many others.
Because of their unique magnetic, luminescent, and electrochemical properties, these elements help make many technologies perform with reduced weight, reduced emissions, and energy consumption; or give them greater efficiency, performance, miniaturization, speed, durability, and thermal stability. Rare earth-enabled products and technologies help fuel global economic growth, maintain high standards of living, and even save lives.

There are 17 elements that are considered to be rare earth elements—15 elements in the lanthanide series and two additional elements that share similar chemical properties. They are listed below in order of atomic number (Z):
The uses, applications, and demand for rare-earth elements have expanded over the years. This is particularly due to the uses of rare-earth elements in low-carbon technologies. Some important uses of rare-earth elements are applicable to the production of high-performance magnets, catalysts, alloys, glasses, and electronics. Nd is important in magnet production. Rare-earth elements in this category are used in the electric motors of hybrid vehicles, wind turbines, hard disc drives, portable electronics, microphones, speakers. Ce and La are important as catalysts, and are used for petroleum refining and as diesel additives. Ce, La and Nd are important in alloy making, and in the production of fuel cells and Nickel-metal hydride batteries. Ce, Ga and Nd are important in electronics and are used in the production of LCD and plasma screens, fiber optics, lasers, as well as in medical imaging. Additional uses for earth elements are as tracers in medical applications, fertilizers, and in water treatment. REEs have been used in agriculture to increase plant growth, productivity, and stress resistance seemingly without negative effects for human and animal consumption. REEs are used in agriculture through REE-enriched fertilizers which is a widely used practice in China.In addition; REEs are feed additives for livestock which has resulted in increased production such as larger animals and a higher production of eggs and dairy products. However, this practice has resulted in REE bio-accumulation within livestock and has impacted vegetation and algae growth in this agricultural area. Additionally while no ill effects have been observed at current low concentrations the effects over the long term and with accumulation over time are unknown prompting some calls for more research into their possible effects.

Geology and rare earth metals
The application of rare-earth elements to geology is important to understanding the petrological processes of igneous, sedimentary and metamorphic rock formation. In geochemistry, rare-earth elements can be used to infer the petrological mechanisms that have affected a rock due to the subtle atomic size differences between the elements, which causes preferential fractionation of some rare earths relative to others depending on the processes at work.
In geochemistry, rare-earth elements are typically presented in normalized "spider" diagrams, in which concentration of rare-earth elements are normalized to a reference standard and are then expressed as the logarithm to the base 10 of the value. Commonly, the rare-earth elements are normalized to chondritic meteorites, as these are believed to be the closest representation of unfractionated solar system material. However, other normalizing standards can be applied depending on the purpose of the study. Normalization to a standard reference value, especially of a material believed to be unfractionated, allows the observed abundances to be compared to initial abundances of the element. Normalization also removes the pronounced ‘zig-zag’ pattern caused by the differences in abundance between even and odd atomic numbers. The trends that are observed in "spider" diagrams are typically referred to as "patterns", which may be diagnostic of petrological processes that have affected the material of interest.
The rare-earth elements patterns observed in igneous rocks are primarily a function of the chemistry of the source where the rock came from, as well as the fractionation history the rock has undergone.Fractionation is in turn a function of the partition coefficients of each element. Partition coefficients are responsible for the fractionation of a trace elements (including rare-earth elements) into the liquid phase (the melt/magma) into the solid phase (the mineral). If an element preferentially remains in the solid phase it is termed ‘compatible’, and it preferentially partitions into the melt phase it is described as ‘incompatible’.Each element has a different partition coefficient, and therefore fractionates into solid and liquid phases distinctly. These concepts are also applicable to metamorphic and sedimentary petrology.
In igneous rocks, particularly in felsic melts, the following observations apply: anomalies in europium are dominated by the crystallization of feldspars. Hornblende, controls the enrichment of MREE compared to LREE and HREE. Depletion of LREE relative to HREE may be due to the crystallization of olivine, orthopyroxene, and clinopyroxene. On the other hand, depletion of HREE relative to LREE may be due to the presence of garnet, as garnet preferentially incorporates HREE into its crystal structure. The presence of zircon may also cause a similar effect
In sedimentary rocks, rare-earth elements in clastic sediments are a representation provenance. The rare-earth element concentrations are not typically affected by sea and river waters, as rare-earth elements are insoluble and thus have very low concentrations in these fluids. As a result, when a sediment is transported, rare-earth element concentrations are unaffected by the fluid and instead the rock retains the rare-earth element concentration from its source.
Sea and river waters typically have low rare-earth element concentrations. However, aqueous geochemistry is still very important. In oceans, rare-earth elements reflect input from rivers, hydrothermal vents, and aeolian sources; this is important in the investigation of ocean mixing and circulation.
Rare-earth elements are also useful for dating rocks, as some radioactive isotopes display long half-lives. Of particular interest are the 138La-138Ce, 147Sm-143Nd, and176Lu-176Hf systems.


Scandium or Sc (21)
Scandium, a silvery-white metal, is a non-lanthanide rare earth. It is used in many popular consumer products, such as televisions and fluorescent or energy-saving lamps. In industry, the primary use of scandium is to strengthen metal compounds. The only concentrated sources of scandium currently known are in rare minerals such as thortveitite, euxenite, and gadolinite from Scandinavia and Madagascar.
Yttrium or Y (39)
Yttrium is a non-lanthanide rare earth element used in many vital applications, such as superconductors, powerful pulsed lasers, cancer treatment drugs, rheumatoid arthritis medicines, and surgical supplies. A silvery metal, it is also used in many popular consumer products, such as color televisions and camera lenses.
Lanthanum or La (57)
This silver-white metal is one of the most reactive rare earth elements. It is used to make special optical glasses, including infrared absorbing glass, camera and telescope lenses, and can also be used to make steel more malleable. Other applications for lanthanum include wastewater treatment and petroleum refining.
Cerium or Ce (58)
Named for the Roman goddess of agriculture, Ceres, cerium is a silvery-white metal that easily oxidizes in the air. It is the most abundant of the rare earth elements and has many uses. For instance, cerium oxide is used as a catalyst in catalytic converters in automotive exhaust systems to reduce emissions, and is highly desirable for precision glass polishing. Cerium can also be used in iron, magnesium and aluminum alloys, magnets, certain types of electrodes, and carbon-arc lighting.
Praseodymium or Pr (59)
This soft, silvery metal was first used to create a yellow-orange stain for ceramics. Although still used to color certain types of glasses and gemstones, praseodymium is primarily used in rare earth magnets. It can also be found in applications as diverse as creating high-strength metals found in aircraft engines and in flint for starting fires.
Neodymium or Nd (60)
Another soft, silvery metal, neodymium is used with praseodymium to create some of the strongest permanent magnets available. Such magnets are found in most modern vehicles and aircraft, as well as popular consumer electronics such as headphones, microphones and computer discs. Neodymium is also used to make high-powered, infrared lasers for industrial and defense applications.
Promethium or Pm (61)
Although the search for the element with atomic number 61 began in 1902, it was not until 1947 that scientists conclusively produced and characterized promethium, which is named for a character in Greek mythology. It is the only naturally radioactive rare earth element, and virtually all promethium in the earth’s crust has long ago decayed into other elements. Today, it is largely artificially created, and used in watches, pacemakers, and in scientific research.
Samarium or Sm (62)
This silvery metal can be used in several vital ways. First, it is part of very powerful magnets used in many transportation, defense, and commercial technologies. Second, in conjunction with other compounds for intravenous radiation treatment it can kill cancer cells and is used to treat lung, prostate, breast and some forms of bone cancer. Because it is a stable neutron absorber, samarium is used to control rods of nuclear reactors, contributing to their safe use.
Europium or Eu (63)
Named for the continent of Europe, europium is a hard metal used to create visible light in compact fluorescent bulbs and in color displays. Europium phosphors help bring bright red to color displays and helped to drive the popularity of early generations of color television sets. Fittingly, it is used to make the special phosphors marks on Euro notes that prevent counterfeiting.
Gadolinium or Gd (64)
Gadolinium has particular properties that make it especially suited for important functions, such as shielding in nuclear reactors and neutron radiography. It can target tumors in neuron therapy and can enhance magnetic resonance imaging (MRI), assisting in both the treatment and diagnosis of cancer. X-rays and bone density tests can also use gadolinium, making this rare earth element a major contributor to modern health care solutions.
Terbium or Tb (65)
This silvery rare earth metal is so soft it can be cut with a knife. Terbium is often used in compact fluorescent lighting, color displays, and as an additive to permanent rare earth magnets to allow them to function better under higher temperatures. It can be found in fuel cells designed to operate at elevated temperatures, in some electronic devices and in naval sonar systems. Discovered in 1843, terbium in its alloy form has the highest magnetostriction of any such substance, meaning it changes its shape due to magnetization more than any other alloy. This property makes terbium a vital component of Terfenol-D, which has many important uses in defense and commercial technologies.
Dysprosium or Dy (66)
Another soft, silver metal, dysprosium has one of the highest magnetic strengths of the elements, matched only by holmium. Dysprosium is often added to permanent rare earth magnets to help them operate more efficiently at higher temperatures. Lasers and commercial lighting can use dysprosium, which may also be used to create hard computer disks and other electronics that require certain magnetic properties. Dysprosium may also be used in nuclear reactors and modern, energy-efficient vehicles.
Holmium or Ho (67)
Holmium was discovered in 1878 and named for the city of Stockholm. Along with dysprosium, holmium has incredible magnetic properties. In fact, some of the strongest artificially created magnetic fields are the result of magnetic flux concentrators made with holmium alloys. In addition to providing coloring to cubic zirconia and glass, holmium can be used in nuclear control rods and microwave equipment.
Erbium or Er (68)
Another rare earth with nuclear applications, erbium can be found in neutron-absorbing control rods. It is a key component of high-performance fiber optic communications systems, and can also be used to give glass and other materials a pink color, which has both aesthetic and industrial purposes. Erbium can also help create lasers, including some used for medical purposes.
Thulium or Tm (69)
A silvery-gray metal, thulium is one of the least abundant rare earths. Its isotopes are widely used as the radiation device in portable X-rays, making thulium a highly useful material. Thulium is also a component of highly efficient lasers with various uses in defense, medicine and meteorology.
Ytterbium or Yb (70)
This element, named for a village in Sweden associated with its discovery, has several important uses in health care, including in certain cancer treatments. Ytterbium can also enhance stainless steel and be used to monitor the effects of earthquakes and explosions on the ground.
Lutetium or Lu (71)         
The last of the rare earth elements (in order of their atomic number) has several interesting uses. For instance, lutetium isotopes can help reveal the age of ancient items, like meteorites. It also has applications related to petroleum refining and positron emission tomography. Experimentally, lutetium isotopes have been used to target certain types of tumors.
Collectively, the rare earth elements contribute to vital technologies we rely on today for safety, health and comfort. All of the rare earth elements contribute to the advancement of modern technologies and to promising discoveries yet to come.
Market demand for rare earth metals and Renewable energy  
By most accounts, the green technology revolution is imminent and will be massive. We’re already seeing the early days of a shift away from fossil fuels and towards renewables with the rise of electric and hybrid vehicles and wind turbines increasingly popping up across the landscape.  These technologies are poised to take over quickly. At the center of this revolution are the raw materials needed to make these technologies function and this means incredible opportunity for companies producing the rare earth metals neodymium and praseodymium (NdPr).
At the 2017 International Renewable Energy Agency (IRENA) assembly, the organization’s Director-General Adnan Z. Amin highlighted the “phenomenal” pace at which renewable energies are gaining ground, highlighting the falling costs and rising capacity for renewable energy generation. The number of electric vehicles (EVs) on the road is steadily rising from 3.7 million in 2017 to a projected 13 million by 2020 according the International Energy Agency (IEA). Vehicle manufacturers are scrambling to prepare for this shift, with most major manufacturers now offering at least one electric model with plans underway for more expansive offerings.
Leading the way for this transition is China. Under intense pressure to address the massive pollution problem causing the ubiquitous smog problem that has plagued the nations largest cities, the Chinese government has put significant focus on investment into renewables. Today, more than half of the EVs on the road are driving the streets of the most populous nation on Earth and China is home to the vast majority of electric automakers. China also has a wind power capacity of 2,380 gigawatts, the largest of any nation on the planet.
Rare earths and high power magnets
The technology behind the renewable energy revolution would not be possible without neodymium, the rare earth element used to make the most powerful industrial magnets available. Within just about any electric motor a neodymium magnet can be found, made from an alloy of neodymium, iron and boron.
The very specific tetragonal crystalline structure of these magnets ensures that they magnetize exclusively along a particular crystal axis and will not magnetize in any other direction. This makes neodymium magnets highly resistant to demagnetization. There’s a range of magnetic material that can be used in electric motors and other technologies like wind turbines, but due to its resistance to demagnetization, neodymium is greatly preferred.
Electricity generated by turbines using NdPr magnets transforms the energy that will drive the future. And that future will be driven by NdPr-powered electric motors. At this point, there’s very little doubt about that. Market momentum is quickly shifting towards these renewable technologies, a phenomenon that is being helped along by tightening global emission standards and government policies around the world designed to encourage investment in renewables. The bottom line: we’re going to need a lot of NdPr.
Supply and market demand for rare earth metals
The momentum of the renewable energy sector has led to concerns of a supply deficit, as automakers and other manufacturers scramble to get a hold of the materials needed to build green technologies  automakers are now currently looking to ensure that they have long term supply agreements for the rare earth magnet metals. Even if they are not producing EVs today, they are now designing their models three or four years in advance of actual assembly and these long lead times mean they need to ensure they have all the component parts locked down well in advance.
China is the world’s largest producer of rare earth resources, as well as the global leader in renewable technologies. As the producer of 85 percent of global rare earth production, one might assume that China would take this opportunity to further establish itself as the primary global rare earth supplier. However, going forward, China may have little interest in exporting its rare earths. Rather, the populous country is focusing its rare earth dominance on aiding the domestic EV market, keeping their own product within its borders as well as encouraging foreign firms to move production to China. This is in hopes of cementing the country’s global dominance in the EV market as EVs become the standard worldwide. This further exacerbates rare earth supply concerns outside of China. The resulting deficit for China’s insatiable market demand for rare earth metals could create an extremely favorable environment for rare earth producers in China as well as those serving the market beyond its borders.
Rare-earth element cerium is actually the 25th most abundant element in Earth's crust, having 68 parts per million (about as common as copper). Only the highly unstable and radioactive promethium “rare earth" is quite scarce.
The rare-earth elements are often found together. The longest-lived isotope of promethium has a half-life of 17.7 years, so the element exists in nature in only negligible amounts (approximately 572 g in the entire Earth's crust). Promethium is one of the two elements that do not have stable (non-radioactive) isotopes and are followed by (i.e. with higher atomic number) stable elements (the other being technetium).
During the sequential accretion of the Earth, the dense rare-earth elements were incorporated into the deeper portions of the planet. Early differentiation of molten material largely incorporated the rare-earths into Mantle rocks.The high field strength and large ionic radii of rare-earths make them incompatible with the crystal lattices of most rock-forming minerals, so REE will undergo strong partitioning into a melt phase if one is present. REE are chemically very similar and have always been difficult to separate, but a gradual decrease in ionic radius from LREE to HREE, called lanthanide contraction, can produce a broad separation between light and heavy REE. The larger ionic radii of LREE make them generally more incompatible than HREE in rock-forming minerals, and will partition more strongly into a melt phase, while HREE may prefer to remain in the crystalline residue, particularly if it contains HREE-compatible minerals like garnet.The result is that all magma formed from partial melting will always have greater concentrations of LREE than HREE, and individual minerals may be dominated by either HREE or LREE, depending on which range of ionic radii best fits the crystal lattice.
Among the anhydrous rare-earth phosphates, it is the tetragonal mineral xenotime that incorporates yttrium and the HREE, whereas the monoclinic monazitephase incorporates cerium and the LREE preferentially. The smaller size of the HREE allows greater solid solubility in the rock-forming minerals that make up Earth's mantle, and thus yttrium and the HREE show less enrichment in Earth's crust relative to chondritic abundance than does cerium and the LREE. This has economic consequences: large ore bodies of LREE are known around the world and are being exploited. Ore bodies for HREE are more rare, smaller, and less concentrated. Most of the current supply of HREE originates in the "ion-absorption clay" ores of Southern China. Some versions provide concentrates containing about 65% yttrium oxide, with the HREE being present in ratios reflecting the Oddo–Harkins rule: even-numbered REE at abundances of about 5% each, and odd-numbered REE at abundances of about 1% each. Similar compositions are found in xenotime or gadolinite.
Well-known minerals containing yttrium, and other HREE, include gadolinite, xenotime, samarskite, euxenite, fergusonite, yttrotantalite, yttrotungstite, yttrofluorite (a variety of fluorite), thalenite, yttrialite. Small amounts occur in zircon, which derives its typical yellow fluorescence from some of the accompanying HREE. The zirconium mineral eudialyte, such as is found in southern Greenland, contains small but potentially useful amounts of yttrium. Of the above yttrium minerals, most played a part in providing research quantities of lanthanides during the discovery days. Xenotime is occasionally recovered as a byproduct of heavy-sand processing, but is not as abundant as the similarly recovered monazite (which typically contains a few percent of yttrium). Uranium ores from Ontario have occasionally yielded yttrium as a byproduct.
Well-known minerals containing cerium, and other LREE, include bastnäsite, monazite, allaniteloparite, ancylite, parisite, lanthanite, chevkinite, cerite, stillwellite, britholite, fluocerite, and cerianite. Monazite (marine sands from Brazil, India, or Australia; rock from South Africa), bastnäsite (from Mountain Pass, California, or several localities in China), and loparite (Kola Peninsula, Russia) have been the principal ores of cerium and the light lanthanides.
Enriched deposits of rare-earth elements at the surface of the Earth, carbonatites and pegmatites, are related to alkaline plutonism, an uncommon kind of magmatism that occurs in tectonic settings where there is rifting or that are near subduction zones.In a rift setting, the alkaline magma is produced by very small degrees of partial melting (<1 garnet="" in="" of="" peridotite="" span="" the="" upper="">mantle (200 to 600 km depth).This melt becomes enriched in incompatible elements, like the rare-earth elements, by leaching them out of the crystalline residue. The resultant magma rises as a diapir, or diatreme, along pre-existing fractures, and can be emplaced deep in the crust, or erupted at the surface. Typical REE enriched deposits types forming in rift settings are carbonatites, and A- and M-Type granitoids. Near subduction zones, partial melting of the subducting plate within the asthenosphere (80 to 200 km depth) produces a volatile-rich magma (high concentrations of CO2 and water), with high concentrations of alkaline elements, and high element mobility that the rare-earths are strongly partitioned into.This melt may also rise along pre-existing fractures, and be emplaced in the crust above the subducting slab or erupted at the surface. REE enriched deposits forming from these melts are typically S-Type granitoids.
Alkaline magmas enriched with rare-earth elements include carbonatites, peralkaline granites (pegmatites), and nepheline syenite.Carbonatites crystallize from CO2-rich fluids, which can be produced by partial melting of hydrous-carbonated lherzolite to produce a CO2-rich primary magma, by fractional crystallization of an alkaline primary magma, or by separation of a CO2-rich immiscible liquid from.These liquids are most commonly forming in association with very deep Precambrian Cratons, like the ones found in Africa and the Canadian Shield. Ferrocarbonatites are the most common type of carbonatite to be enriched in REE, and are often emplaced as late-stage, brecciated pipes at the core of igneous complexes; they consist of fine-grained calcite and hematite, sometimes with significant concentrations of ankerite and minor concentrations of siderite. Large carbonatite deposits enriched in rare-earth elements include Mount Weld in Australia, Thor Lake in Canada, Zandkopsdrift in South Africa, and Mountain Pass in the USA. Peralkaline granites (A-Type granitoids) have very high concentrations of alkaline elements and very low concentrations of phosphorus; they are deposited at moderate depths in extensional zones, often as igneous ring complexes, or as pipes, massive bodies, and lenses.These fluids have very low viscosities and high element mobility, which allows for crystallization of large grains, despite a relatively short crystallization time upon emplacement; their large grain size is why these deposits are commonly referred to as pegmatites. Economically viable pegmatites are divided into Lithium-Cesium-Tantalum (LCT) and Niobium-Yttrium-Fluorine (NYF) types; NYF types are enriched in rare-earth minerals. Examples of rare-earth pegmatite deposits include Strange Lake in Canada, and Khaladean-Buregtey in Mongolia. Nepheline syenite (M-Type granitoids) deposits are 90% feldspar and feldspathoid minerals, and are deposited in small, circular massifs. They contain high concentrations of rare-earth-bearing accessory minerals For the most part these deposits are small but important examples include Illimaussaq-Kvanefeld in Greenland, and Lovozera in Russia.

Rare earths players
Medallion Resources is one of the companies looking to help fill the rare earth supply void in North America. The company is focused on acquiring discarded or stockpiled monazite via long-term supply agreements with mineral sands mines and shipping these materials to a North American processing plant to extract a rare earth chemical concentrate product. Medallion has developed a unique method for turning that waste product into useful rare earth material at low cost. The company hopes this will put them on the path to becoming a major player in the nascent rare earths market.
In China, the industry is dominated by a mix of private firms, local state owned firms and national state firms. Major Chinese rare earth companies include Inner Mongolia Baotou Steel Rare-Earth Hi-Tech Company, China Minmetals Corporation, Aluminum Corporation of China Limited and China Non-Ferrous Metal Mining.
Coming in at a very distant second, the largest rare earth producing nation after China is Australia. Production in the land down under has been rising steadily over the past few years, reaching 20,000 MT in 2017. Australian company Lynas (ASX:LYC) operates Australia’s Mount Weld mine, one of the largest rare earth producers on the planet. Australian company Northern Minerals (ASX:NTU) added to the country’s production in 2017 when they opened Australia’s first heavy rare earths mine.   
Rare-earth elements can also be enriched in deposits by secondary alteration either by interactions with hydrothermal fluids or meteoric water or by erosion and transport of resistate REE-bearing minerals. Argillization of primary minerals enriches insoluble elements by leaching out silica and other soluble elements, recrystallizing feldspar into clay minerals such kaolinite, halloysite and montmorillonite. In tropical regions where precipitation is high, weathering forms a thick argillized regolith, this process is called supergene enrichment and produces laterite deposits; heavy rare-earth elements are incorporated into the residual clay by absorption. This kind of deposit is only mined for REE in Southern China, where the majority of global heavy rare-earth element production occurs. REE-laterites do form elsewhere, including over the carbonatite at Mount Weld in Australia. REE may also by extracted from placer deposits if the sedimentary parent lithology contained REE-bearing, heavy resistate minerals.
In 2011, Yasuhiro Kato, a geologist at the University of Tokyo who led a study of Pacific Ocean seabed mud, published results indicating the mud could hold rich concentrations of rare-earth minerals. The deposits, studied at 78 sites, came from "[h]ot plumes from hydrothermal vents pull[ing] these materials out of seawater and deposit[ing] them on the seafloor, bit by bit, over tens of millions of years. One square patch of metal-rich mud 2.3 kilometers wide might contain enough rare earths to meet most of the global demand for a year, Japanese geologists report July 3 in Nature Geoscience." "I believe that rare  earth resources undersea are much more promising than on-land resources," said Kato. "Concentrations of rare earths were comparable to those found in clays mined in China. Some deposits contained twice as much heavy rare earths such as dysprosium, a component of magnets in hybrid car motors.
Global rare-earth production


Until 1948, most of the world's rare earths were sourced from placer sand deposits in India and Brazil. Through the 1950s, South Africa was the world's rare-earth source, from a monazite-rich reef at the Steenkampskraal mine in Western Cape Province. Through the 1960s until the 1980s, the Mountain Pass rare earth mine in California was the leading producer. Today, the Indian and South African deposits still produce some rare-earth concentrates, but they are dwarfed by the scale of Chinese production. In 2017, China produced 81% of the world's rare-earth supply, mostly in Mongolia, although it had only 36.7% of reserves. Australia was the second and only other major producer with 15% of world production. All of the world's heavy rare earths (such as dysprosium) come from Chinese rare-earth sources such as the polymetallic Bayan Obo deposit. The Browns Range mine, located 160 km south east of Halls Creek in northern Western Australia, is currently under development and is positioned to become the first significant dysprosium producer outside of China.
Increased demand has strained supply, and there is growing concern that the world may soon face a shortage of the rare earths. In several years from 2009 worldwide demand for rare-earth elements is expected to exceed supply by 40,000 tonnes annually unless major new sources are developed. In 2013, it was stated that the demand for REEs would increase due to the dependence of the EU on these elements, the fact that rare earth elements cannot be substituted by other elements and that REEs have a low recycling rate. Furthermore, due to the increased demand and low supply, future prices are expected to increase and there is a chance that countries other than China will open REE mines.REE is increasing in demand due to the fact that they are essential for new and innovative technology that is being created. These new products that need REEs to be produced are high technology equipment such as smart phones, digital cameras, computer parts, etc. In addition, these elements are more prevalent is production in the renewable energy technology industry, military equipment industry, glass making and metallurgy
Conclusions
The world-wide shift to renewable technology is well underway and the effects will be seen more and more across global commerce as the revolution gains steam. In the global resource industry this means a huge boom for the market demand for rare earth metals that are absolutely vital to the adoption of these technologies. As the world’s largest rare earth producing country keeps a tight grasp on its own production, the rest of the world will provide a rare and massive opportunity for non-Chinese rare earth companies.

Rare Earth Metals Ban : May, 29, 2019:
  Beijing is "seriously considering" restricting exports to the United States of rare earths, 17 chemical elements used in high-tech consumer electronics and military equipment, the editor in chief of China's Global Times said on Tuesday. Rising trade tensions have led to concerns that Beijing will use its dominant position as a supplier of rare earths for leverage in the trade war between the United States and China. A senior official from China's National Development and Reform Commission told the Xinhua news agency on Tuesday that Beijing will give domestic demand for rare earths priority, but will meet reasonable demand from other countries